Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36872490

RESUMO

Genomics can play important roles in biodiversity conservation, especially for Extinct-in-the-Wild species where genetic factors greatly influence risk of total extinction and probability of successful reintroductions. The Christmas Island blue-tailed skink (Cryptoblepharus egeriae) and Lister's gecko (Lepidodactylus listeri) are two endemic reptile species that went extinct in the wild shortly after the introduction of a predatory snake. After a decade of management, captive populations have expanded from 66 skinks and 43 geckos to several thousand individuals; however, little is known about patterns of genetic variation in these species. Here, we use PacBio HiFi long-read and Hi-C sequencing to generate highly contiguous reference genomes for both reptiles, including the XY chromosome pair in the skink. We then analyse patterns of genetic diversity to infer ancient demography and more recent histories of inbreeding. We observe high genome-wide heterozygosity in the skink (0.007 heterozygous sites per base-pair) and gecko (0.005), consistent with large historical population sizes. However, nearly 10% of the blue-tailed skink reference genome falls within long (>1 Mb) runs of homozygosity (ROH), resulting in homozygosity at all major histocompatibility complex (MHC) loci. In contrast, we detect a single ROH in Lister's gecko. We infer from the ROH lengths that related skinks may have established the captive populations. Despite a shared recent extinction in the wild, our results suggest important differences in these species' histories and implications for management. We show how reference genomes can contribute evolutionary and conservation insights, and we provide resources for future population-level and comparative genomic studies in reptiles.

2.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187753

RESUMO

Over the past two decades, evolutionary biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common - not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past ~40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni×X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.

3.
Curr Biol ; 32(16): R865-R868, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998591

RESUMO

Biologists have forever sought to understand how species arise and persist. Historically, species that rarely interbreed, or are reproductively isolated, were considered the norm, while those with incomplete reproductive isolation were considered less common. Over the last few decades, advances in genomics have transformed our understanding of the frequency of gene flow between species and with it our ideas about reproductive isolation in nature. These advances have uncovered a rich and often complicated history of genetic exchange between species - demonstrating that such genetic introgression is an important evolutionary process widespread across the tree of life (Figure 1).


Assuntos
Hibridização Genética , Isolamento Reprodutivo , Evolução Biológica , Fluxo Gênico , Genômica
4.
PLoS Genet ; 18(1): e1009914, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085234

RESUMO

Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.


Assuntos
Ciprinodontiformes/genética , Proteínas de Peixes/genética , Animais , Cruzamentos Genéticos , Evolução Molecular , Genoma , Hibridização Genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...